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1. Introduction
In this document we provide supplementary information

for our paper ‘Structured Low-Rank Matrix Factorization
for Point-Cloud Denoising’, referred to as Main Paper.

2. Theoretical Motivation of Dictionary Learn-
ing Framework

Please see Section 3.3 in the Main paper for the meaning
of the variables and the context of the following equations.
Matrix factorization:

min
Φ,A

`(Y,ΦA) + Ω(Φ, A) , (1)

Loss function with unobserved data:

`(Y,ΦA) := ‖M � (Y − ΦA)‖2F , (2)

Regularizer:

Ω(Φ, A) = λ

r∑
i=1

‖Φi‖φ‖ATi,:‖a , (3)

where

‖y‖φ = λ2‖y‖2 + λE‖Ey‖2, and (4)
‖z‖a = λ1‖z‖1 . (5)

Motivation for the regularizer (Eq. 4, Main paper):
The motivation for using this particular form of the reg-
ularizer in (3) (Eq. 4, Main paper), i.e. the sum of the
product of two vector norms, lies in its relation to the pro-
jective tensor norm [2, 7], which plays an important role
for the theoretical motivation of the employed framework
[2, 7, 3]. Roughly speaking, one can introduce a lifted op-
timization problem that is closely related to Problem (1),
where one combines the loss function (2) (defined for the
lifted variable) with the projective tensor norm as regular-
izer for the lifted variable. In this case, one directly op-
timizes over the product ΦA := X, rather than over Φ

and A individually. Since the loss function (2) is convex
in X (= ΦA), and the projective tensor norm is also convex
in X (since it is a norm), the so-introduced lifted problem
is convex. While one can now, in principal, directly find
the global minimizer X∗ of the lifted convex problem, this
does not yield the desired factorization (Φ, A). Moreover,
depending on the choice of norms, cf. (3), computing the
projective tensor norm may be very difficult. Instead, based
on the much-celebrated Burer-Monteiro approach [5], one
can consider a (non-convex) factorized version of the lifted
problem, where, under certain conditions, a rank-deficient
local optimum is also a global optimum. For further details
and background we refer the interested reader to [5, 2, 7, 3].

3. Results
Table 1 shows the full quantitative results on 9 meshes,

whose summary is provided in Table 1, Main paper.
In addition we provide zoomed version of some of the

figures from the Main paper in Fig.s 1–4.
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σ noisy plane [6] [1] ours

Bunny 0.0025 2.49e-03 2.91e-03 1.57e-03 1.93e-03 7.17e-04
0.0050 4.98e-03 3.35e-03 4.25e-03 2.58e-03 1.15e-03
0.0075 7.44e-03 3.24e-03 7.02e-03 3.23e-03 1.62e-03

MilkBottle 0.0025 2.50e-03 2.66e-03 2.51e-02 1.66e-03 6.46e-04
0.0050 4.99e-03 3.41e-03 2.44e-02 2.24e-03 1.08e-03
0.0075 7.45e-03 3.34e-03 2.24e-02 2.96e-03 1.63e-03

Baseball 0.0025 2.72e-03 1.98e-03 1.64e-03 2.17e-03 1.12e-03
0.0050 5.11e-03 2.43e-03 3.92e-03 2.70e-03 1.16e-03
0.0075 7.58e-03 2.43e-03 7.21e-03 3.24e-03 1.28e-03

Fandisk 0.0025 2.49e-03 2.27e-03 1.44e-03 1.89e-03 8.12e-04
0.0050 4.96e-03 2.56e-03 3.59e-03 2.52e-03 1.46e-03
0.0075 7.39e-03 2.92e-03 6.03e-03 3.17e-03 2.05e-03

Supernova 0.0025 2.48e-03 3.71e-03 2.26e-03 1.41e-03 1.09e-03
0.0050 4.88e-03 3.79e-03 5.02e-03 2.17e-03 1.70e-03
0.0075 7.22e-03 3.82e-03 7.05e-03 3.05e-03 2.25e-03

Terrex 0.0025 2.48e-03 3.01e-03 2.08e-03 1.50e-03 1.01e-03
0.0050 4.90e-03 3.32e-03 4.49e-03 2.21e-03 1.63e-03
0.0075 7.27e-03 3.53e-03 6.30e-03 3.08e-03 2.44e-03

Wander 0.0025 2.46e-03 3.27e-03 2.11e-03 1.55e-03 1.54e-03
0.0050 4.81e-03 3.81e-03 4.06e-03 2.42e-03 2.52e-03
0.0075 6.99e-03 4.45e-03 5.78e-03 3.48e-03 3.61e-03

Leather-Shoe 0.0025 2.48e-03 3.05e-03 2.25e-03 1.49e-03 1.02e-03
0.0050 4.93e-03 3.57e-03 4.97e-03 2.21e-03 1.74e-03
0.0075 7.31e-03 4.00e-03 6.92e-03 3.13e-03 2.79e-03

Brain 0.0025 2.50e-03 2.89e-03 1.98e-03 1.57e-03 8.83e-04
0.0050 4.98e-03 3.14e-03 4.26e-03 2.23e-03 1.57e-03
0.0075 7.42e-03 3.74e-03 6.37e-03 3.11e-03 2.56e-03

Table 1. Comparison of RMS point-to-mesh error (relative to bounding box) of different algorithms for various Gaussian noise levels with
standard deviation σ.
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Figure 1. Result of our denoising algorithm with uniform noise (50% of input points) in addition to Gaussian noise (σ = 0.0025) for the
model Fandisk (Top) and Brain (Bottom). The RMS error after denoising is 8.05e-04 and 8.70e-04 for Fandisk and Brain respectively (in
comparison to 8.12e-04 and 8.83e-04 in the experiment without white noise). This shows that our denoising algorighm is highly resistant
to outliers. (Zoomed version of Figure 6, Main Paper)
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Figure 2. Result of our denoising algorithm when the noise is added in the direction of camera. The left part shows the noisy data and the
right part shows the denoised output. It can be seen that our method consistently removes the noise from the surface perpendicular to the
camera direction (where the maximum amount of noise occurs, see region a) and that it does not alter much when the surface is parallel to
the camera direction (places where the surface is mostly unaffected by the added noise, see region b) (Zoomed version of Figure 7, Main
Paper).



Figure 3. Top: Denoising of a point-cloud with noise obtained by a Kinect simulator [4] (parameters: r = 0.05, m = 16). Bottom:
Visualization of the noisy and the corresponding denoised displacement maps. Note the removal of typical fringe patterns in both the raw
depth scan (zoomed version) and the displacement maps (detailed version of Figure 8, Main Paper).



Figure 4. Denoising result from a range scanner. From left to right we show raw scanned data, denoising results from Cheng Et. al [6],
moving least-squares [1] and ours. Parameters: r = 0.25,m = 16. (Zoomed version of Figure 9, Main Paper).


