
Structured Low-Rank Matrix Factorization for Point-Cloud Denoising

Kripasindhu Sarkar1,2, Florian Bernard3,4, Kiran Varanasi1, Christian Theobalt3,4, and Didier Stricker1,2

1DFKI Kaiserslautern, 2TU Kaiserslautern, 3MPI Informatics, 4Saarland Informatics Campus

Abstract

In this work we address the problem of point-cloud de-
noising, where we assume that a given point-cloud com-
prises (noisy) points that were sampled from an underlying
surface that is to be denoised. We phrase the point-cloud
denoising problem in terms of a dictionary learning frame-
work. To this end, for a given point-cloud we (robustly) ex-
tract planar patches covering the entire point-cloud, where
each patch contains a (noisy) description of the local struc-
ture of the underlying surface. Based on the general as-
sumption that many of the local patches (in the noise-free
point-cloud) contain redundant information (e.g. due to
smoothness of the surface, or due to repetitive structures),
we find a low-dimensional affine subspace that (approxi-
mately) explains the extracted (noisy) patches. Computa-
tionally, this is achieved by solving a structured low-rank
matrix factorization problem, where we impose smoothness
on the patch dictionary and sparsity on the coefficients. We
experimentally demonstrate that our method outperforms
existing denoising approaches in various noise scenarios.

1. Introduction

Point-clouds are a ubiquitous representation of 3D data
that are obtained as the output of a 3D scanner (e.g. range
scanners, Kinect etc.), or are the end-result of reconstruc-
tion algorithms (e.g. structure-from-motion, or KinectFu-
sion [30]). A well-known issue with sensor-based data ac-
quisition is that the obtained measurements may be noisy,
so that they do not faithfully reproduce the measured real-
world object. In order to deal with this, various denoising
methods are designed for different kinds of data. A common
assumption of many methods is that one deals with Gaus-
sian noise—an assumption which does not hold in most
real-world applications. Moreover, albeit the fact that point-
clouds describe geometric data, they lack a regular structure
or topology, which makes their denoising more challenging
than for structured data that is defined over a regular grid,
such as images.

Learning-based denoising methods have been demon-

strated to be extremely successful in numerous settings,
particularly for image data [17]. Many of them are based
on convolutional neural networks (CNNs) (e.g., [22, 43]).
They require that the data that is to be processed is amenable
to convolution operations, i.e. the data has a well-defined
topology which ideally is regular. Since images exhibit
these desirable properties, applying convolutions to images
is straightforward. However, defining such operations on
general geometrical objects is more challenging and is an
active area of research (e.g for meshes [8, 29] or for point-
clouds [32, 33, 5]). Due to the lack of a well-defined topol-
ogy, applying such techniques to point-clouds is difficult, so
that often the spatial neighborhood information is not used.

In contrast, we propose a simple method that exploits the
spatial neighborhood in point-clouds and does not require
any training data. We perform point-cloud denoising based
on a matrix factorization formulation, where we pay par-
ticular attention to finding a suitable fixed-length and regu-
lar representation of the point-cloud, such that the above-
described problems regarding irregular structure and the
lack of a topology are circumvented. To this end, similarly
to [16, 36], we represent a given point-cloud by a collection
of (local) displacement maps, each of which encode the lo-
cal structure of the point-cloud within a small patch. Our
novel contribution is a strategy for extracting such patches
that is robust to noise. In contrast to the prior works, we
do not require the patches to be too small [16], or require a
semi-automatic mesh quadrangulation step [36]. We learn
a dictionary that is able to denoise the extracted displace-
ment maps, such that the denoised point-cloud is obtained
from the reconstruction of the denoised local patches. An
important and desirable property of our approach is that it
works under a wide range of different noise characteristics,
as the dictionary learning procedure implicitly deals with
the noise model present in the data.

Main Contributions: The technical contributions of our
method are as follows:

• Given an input 3D point-cloud, we present a method
to robustly extract a collection of patches covering the
entire point-cloud, where each patch describes the lo-

cal structure. Unlike previous works, we do not require
the patches to be exceedingly small [16] or require an
explicit meshing and quadrangulation step [36].
• We propose a formulation of structured matrix factor-

ization for these 3D patches, by extending it to handle
missing data, where the patches may contain unoccu-
pied bins.
• We handle a wide range of noise characteristics includ-

ing real world 3D scanner noise, unlike previous meth-
ods which are limited to normally distributed noise.
We demonstrate superior denoising results as com-
pared to other methods.

2. Related Work
Mesh Denoising: The problem of denoising is directly

connected to building a signal processing framework over a
domain on which the signal is defined [38, 39]. Zhong et
al. [44] propose a method for 3D shape completion by im-
posing sparsity on the Laplacian eigenbasis of the shape.
The more recent approaches for denoising use machine
learning models such as CNNs that are trained on a pre-
registered dataset of meshes [9]. However, to be effective,
they require training data of meshes that are pre-registered
to a common topology, which is a challenging problem in
its own right.

Global models for point-cloud denoising: The alter-
native is to consider the 3D point-clouds directly, with no
structure and grid pattern given for the domain on which
this signal is defined. Unlike with the mesh input, these
methods cannot make use of a surface normal for denois-
ing. Nevertheless, it is possible to learn denoising models
from unstructured point-clouds [32, 33, 1]. These models
are sensitive to a global transformation of the point-cloud,
so the 3D alignment problem needs to be addressed by a
dedicated spatial transformer network [32], which can be
further enhanced by learning local features [33]. Despite
their versatility, these methods ignore the fact that most real
world 3D point-clouds are sampled from objects which can
be represented as manifold surfaces at the local level. Alter-
natively, a dynamic graph CNN model can be learned that
adapts the topology over time [40], but this requires a dy-
namic graph update of a global model. In contrast to these
point-based methods which try to estimate a global model
for the entire point-cloud, our method estimates only local
models (patches) around points, which are simpler to learn.
Moreover, local patch models are well-suited for denoising,
as noise affects the shape in a local manner.

Local methods for point-cloud denoising: A good
strategy of denoising point-clouds is to fit a smooth target
surface using the local neighborhood and project points on
this smooth surface for obtaining the denoised point-cloud
[21, 14, 24, 28, 3, 4]. Out of them, the most popular strat-
egy is the use of a weighted least squares measure biased

towards the local point of computation to fit a continuous
function—also known as Moving Least Squares methods
[3, 4, 21, 24]. On a similar line, [13, 15] use Voronoi-based
computations for the surface reconstruction, while [10] uses
octree decomposition followed by a modified ‘meshless’
Laplacian smoothing for the purpose of denoising. All these
methods perform very well on denoising point-clouds, but
often remove important details of the underlying surface.
This is mostly because of the local nature of the problem
being solved, which does not consider the information com-
ing from different regions of the surface. This motivates
us to use a non-local method on local feature descriptors
(patches), which is further discussed in the subsequent para-
graphs.

Patch-based methods: Patch-based methods have been
developed first for 2D image processing, where it is as-
sumed that the 2D image has a locally sparse representa-
tion in the transformed domain. These algorithms can be
categorised into dictionary based [2, 27, 26] and BM3D
(Block-matching and 3D filtering) based [11, 12, 25] meth-
ods. In BM3D, similar 2D patches are further grouped into
3D groups, which enhances sparsity. Rosman et al. [34] ap-
ply this idea towards the denoising of 3D shapes by match-
ing the patches on a collaborative patch representation. Our
method does not require this a priori matching step.

Digne et al. [16] proposed a method for point-cloud com-
pression by learning a dictionary of circular patches. They
assume that the local patches are sufficiently small (where
the shape is parameterizable to a unit disc). In contrast to
this work, (i) we address the problem of denoising instead
of compression which makes the patch extraction procedure
more challenging, (ii) our local reference frame for patches
is robust to noise and outliers (in comparison to simple
PCA), (iii) our dictionary learning framework handles miss-
ing data, and (iv) as a result of aforementioned differences,
our patch size is much larger in order to have a meaningful
patch description in the presence of noise.

Sarkar et al. [36] are able to address larger patches (in
comparison to [16]), by requiring a 3D mesh input along
with the point-cloud, and computing local patches based on
quadrangulation of its low resolution mesh. Their method
learns a sparse dictionary for 3D shape completion and de-
noising. In a later work [37], they learn a denoising autoen-
coder neural network model by relying on the same mesh
quadrangulation for computing and orienting the patches.
Both of these approaches are limited by the assumption of
mesh quadrangulation, which may not be possible to com-
pute on general point-clouds.

A fundamental problem with applying patch-based
methods to point-clouds is that the patch placement and
orientation can be ambiguous and cannot always be judged
based on the local structure of the point-cloud alone. The
previous approaches worked around this problem by assum-

Denoising by
Dictionary
Learning

Patch
Extraction

Figure 1. Overview of our pipeline. Given a noisy point-cloud
(left), we first extract local patches that cover the entire point-cloud
(center), where each local patch encodes a displacement map (for
illustration purposes we only show a few patches). Subsequently,
we denoise the displacement maps in order to obtain the clean
displacement maps based on dictionary learning, as illustrated in
Fig. 3. After reconstructing the denoised point-cloud based on the
clean displacement maps, we obtain the clean point-cloud (right).

ing the patches to be very small, or requiring a prior match-
ing step, or a mesh quadrangulation step. In this paper, we
propose an alternative by the combination of (i) robust patch
computation and (ii) structured matrix factorization that el-
egantly handles missing data.

3. Point-Cloud Denoising

Overview: We consider the task of denoising a point-
cloud that comprises points that are noisy samples of an (un-
known) surface. In order to process a given point-cloud, we
represent the entire point-cloud by means of (small) planar
patches, where each patch describes the local structure of
the point-cloud in terms of a displacement along the patch
normal. By associating with each patch a rigid-body pose,
i.e. a location and an orientation, one can reconstruct the
point-cloud from its patch-based representation. As such, in
order to perform denoising, we first extract patches from the
noisy point-cloud, we then denoise the patches using dic-
tionary learning, and eventually reconstruct the point-cloud
based on the denoised patches (Fig. 1).

3.1. Notation

For a given integer n ∈ N, we define [n] := {1, . . . , n}.
Let A be an m × n matrix, and let i ∈ [n] and j ∈ [m].
By A:,i we denote the m-dimensional column vector that
is formed by the i-th column of A, for which we also use
the short-hand Ai. Moreover, we denote by Aj,: the n-
dimensional row vector that is formed by the j-th row of
A. The operator � denotes the Hadamard product. For a
point x ∈ R3, we use Nε(x) := {y : ‖x − y‖ < ε} to
denote the ε-neighborhood (or ε-ball) of x, where ‖ ·‖ is the
`2-norm. For a given matrix Z ∈ R3×z containing z points
in 3D, we define NZ

ε (x) := {Zi : i ∈ [z], ‖x− Zi‖ < ε}
to denote the ε-neighborhood of x among the points in Z.

1

0

-1

Figure 2. Illustration of a displacement map that is defined over a
square patch. The displacement values are colour-coded, as shown
in the legend. The points of the point-cloud are shown as black
crosses. The position of each point is described relative to an an-
chor point on the patch by means of a displacement along the patch
normal.

3.2. Patch-based Point-Cloud Representation

In this section we describe the patch-based point-cloud
description, which is also illustrated in Fig. 2. Let X ∈
R3×n be a 3D point-cloud comprising n points, which we
assume to be (noisy) samples of some (unknown) underly-
ing surface. For the patch-based point-cloud representation,
we consider a collection of planar patches that are evenly
distributed so that they cover the entire point-cloud. Each
patch is oriented such that, ideally, the patch normal and the
normal of the underlying surface coincide.

3.2.1 Seed Point Selection

We select a subset of points from the point-cloudX , written
in the matrix S ∈ R3×s, which forms an evenly distributed
and sparse representation of X . The s points of S are used
as seed points for the computation of the patches, which is
based on voxel-based downsampling method with grid cell
length of d. In total, this results in s� n seed points, which
are then stored in the matrix S. The parameter d implicitly
controls the density of the patches that are to be computed.
It should be chosen (together with the neighborhood radius
r) in such a way that all points in the point-cloud are con-
tained in the union of the We r-neighboorhood of the seed
points. Formally, this can be expressed as

∀ j ∈ [n] ∃ i ∈ [s] : Xj ∈ NX
r (Si) . (1)

While the condition d <
√

2r ensures that property (1)
holds, in practice we choose d to be have a similar value
as r in order to achieve a denser covering with the patches.
The parameter choices are explained in Section 4.

3.2.2 Robust Patch Extraction

Next, we describe how to robustly extract patches after the
seed points have been selected. For the sake of a simple
explanation we use square patches (note that disk-shaped
patches could also be considered). To this end, for each seed
point Si ∈ R3 we extract the patch Pi that covers a square
with side length l =

√
2r. The patch Pi = (ti, Ri, Yi) is

represented as a 3-tuple that describes the local structure of

the point-cloud within the r-neighbourhood Nr(Si) of Si.
Here, ti is the location of the center of the patch, Ri is its
orientation, and Yi ∈ Rm×m is the displacement map. For
reasons that will become clear shortly, the seed point loca-
tion Si does not necessarily coincide with patch center ti.
A significant advantage of the displacement map represen-
tation compared to the original point-cloud is that now the
Yi constitute a fixed-length matrix representation of the lo-
cal surface structure, such that they are amenable to simple
linear algebra operations.

Robust selection of orientation and location: In or-
der to obtain a patch that aligns well with the underly-
ing surface—even under significantly noisy point-clouds—
we propose to use a robust strategy that makes use of a
RANSAC-like sampling strategy [18], which is outlined in
Alg. 1. In order to determine whether a point is an inlier for
a given patch, we check whether this point is within a given
distance to the square patch. By considering the point-to-
patch distance (line 8), in contrast to the point-to-plane dis-
tance, one can avoid the problem that a patch is fitted in
such a way that it cuts through the object that is described
by the underlying surface (cf. Fig. 5). After the best patch,
i.e. the one that leads to the largest number of inliers, is de-
termined, the patch orientation is computed based on prin-
cipal component analysis (PCA), and the patch center is set
to the mean of the inlier points. If the number of inliers are
less than a threshold, the seed point and the neighborhood
are discarded, making our method naturally robust to noisy
outliers.

Displacement map computation: Given the computed
position ti and the orientation Ri of the patch, we compute
the fixed-length displacement map from all neighboring
points of the seed point. We represent the r-neighborhood
NX
r (Si) of the seed point Si in the reference frame de-

fined by (ti, Ri), and project all points onto the square
patch, and then sample the patch on an m × m grid of
size l =

√
2r. The displacement value for each bin is then

computed as the median of all “z-coordinates” of the points
that fall in that particular bin. For all p, q ∈ [m], the “z-
coordinates” denote the length of displacements from the
center point aipq ∈ R3 of the bin at position (p, q) along
the patch normal (cf. Fig. 2). In addition, for each point
Xj of the point-cloud, we keep track of the information to
which patch and to which bin of each displacement map it
falls during the patch computation. This correspondence
information is used for the reconstruction of the shapes
from the patches. In order to keep track of this correspon-
dence information, for each j ∈ [n] we define the list of
kj ∈ N index triplets Ij ∈ R3×kj , where each column
(Ij)` =: [i, p, q]T ∈ [s] × [m] × [m] for ` ∈ [kj] contains
the patch index i ∈ [s] in the first row, and the correspond-
ing bin index [p, q]T ∈ [m] × [m] in the second and third
rows. Note that a point Xj can belong to multiple patches

Input: point-cloud X , seed points S, neighborhood r, side length l
Output: patch orientations R1, . . . , Rs and locations t1, . . . , ts

1 foreach i ∈ [s] do
// random sampling to find inlier points

2 Ii ← ∅
3 foreach random sample do
4 randomly select three unique points x, y, z fromNX

r (Si)
5 fit a plane Lput with normal n through x, y, z

6 compute the putative patch center cput ← 1
3
(x+ y + z)

7 define square patch based on l,Lput and cput
8 compute the set of inlier points Iput (point-to-patch

distance)
9 if |Iput| > |Ii| then

10 Ii ← Iput

// determine the orientation
11 obtain orientation Ri based on PCA of Ii

// determine the patch center
12 ti ← mean(Ii)

Algorithm 1: Algorithm for robust patch extraction.

so that kj ≥ 1. In overall, given the point-cloud X as an
input, along with the parameters d, r and m, we compute
the patch set {Pi : i ∈ [s]}, and the set of correspondence
information {Ij : j ∈ [n]}. Note that some of the patch
bins may be unoccupied, i.e. there is no point Xj that falls
into such a bin, which particularly occurs in areas of edges
and corners.

3.2.3 Point-Cloud Reconstruction

Next, we briefly describe how we can reconstruct the point-
cloud given the patch set {Pi = (ti, Ri, Yi) : i ∈ [s]} and
the set of correspondence information {Ij : j ∈ [n]}. To
this end, for all m2 bins we compute the global bin position
aipq ∈ R3 in all s displacement maps, which we also refer
to as anchor points. Then, we obtain each of the ` ∈ [kj]
reconstructed points as aipq + (Yi)pqni, where ni ∈ R3 is
the normal of the i-th patch (which is determined by Ri),
and [i, p, q]T = (Ij)` for all ` ∈ [kj].

3.3. Denoising by Dictionary Learning

In this section we describe the dictionary learning proce-
dure that is used for denoising the collection of displace-
ment maps Y = {Y1, . . . , Ys}. On overview of the ap-
proach is shown in Fig. 3. A theoretical motivation for using
such formulation is provided in the supplementary material.

General matrix factorization: Let yi := vec(Yi) ∈
Rm2

be the vectorization of Yi, and let Y = [y1, . . . , ys] ∈
Rm2×s be the matrix that contains the vectorized displace-
ment maps. With that, finding a low-dimensional subspace
that is a good approximation of the noisy Y can be phrased
as the general matrix factorization problem

min
Φ,A

`(Y,ΦA) + Ω(Φ, A) , (2)

input output dictionary learning

noisy displacement
maps {Yi}

clean displacement
maps {Yi}

dictionary coefficients
 {Ai}

= ⊗

...

...

...

...

...

...

Figure 3. Overview of the dictionary learning method. Given noisy
displacement maps {Yi} as input, the clean displacement maps
{Ȳi} are obtained by learning a sparse dictionary, such that the
clean displacement maps Ȳi are given by a weighted sum of the
dictionary atoms Φ based on the coefficients {Ai}.

where Φ ∈ Rm2×r is the factor matrix that contains r dic-
tionary atoms in its columns, and A ∈ Rr×s contains the
coefficients in order to reconstruct Y using the dictionary
Φ. Here, the function `(·) is the loss function that measures
how well the factorization ΦA approximates the given Y,
and Ω(·) is a regularizer that has the purpose to impose de-
sirable properties upon the factors Φ and the coefficients A.
In the following we will further specify the loss function
and the regularizer.

Matrix Factorization for Denoising: Due to appeal-
ing theoretical properties regarding optimality guarantees,
as well as a promising performance in various applications
(e.g. [6]), for tackling Problem (2) we build upon the struc-
tured low-rank matrix factorization framework by Haeffele
et al. [20]. For the sake of notational convenience, and
w.l.o.g., we assume that Y1s = 0m2 , i.e. the column-mean
of Y is zero (if this is not the case, we simply subtract the
column-mean from Y). Moreover, let M ∈ {0, 1}m2×s be
a binary matrix that masks out unobserved data in the dis-
placement map matrix Y. We define the loss function as

`(Y,ΦA) := ‖M � (Y − ΦA)‖2F , (3)

such that the error when approximating Y using the factor-
ization ΦA is measured in a weighted least-squares sense.
Here, the difference to the work in [20] is that we only com-
pute the least-squares error for those elements in Y that are
available. We emphasize that the possibility of handling
missing data is absolutely essential for point-cloud denois-
ing, since, due to edges and corners of the underlying sur-
face, some bins in the displacement maps of the extracted
patches may be unoccupied.

The purpose of the regularization term Ω(·) is twofold:
on the one hand, it shall impose sparsity on the coefficients
A, such that each yi is reconstructed from only few dictio-
nary atoms, i.e. the columns Φ1, . . . ,Φr of Φ. Moreover, in
addition to sparse coefficients, we impose spatial smooth-
ness as well as `2-regularization upon each dictionary atom
Φi for i ∈ [r]. In the context of learning linear shape de-
formations with spatially localized support, a similar set of
regularizers has been used by Bernard et al. [6]. Our regu-
larizer is given by

Ω(Φ, A) = λ

r∑
i=1

‖Φi‖φ‖ATi,:‖a , (4)

where for y ∈ Rm2

and z ∈ Rs the norms ‖ · ‖φ and ‖ · ‖a
are defined as

‖y‖φ = λ2‖y‖2 + λE‖Ey‖2, and (5)
‖z‖a = λ1‖z‖1 . (6)

The scalars λ, λ2, λE and λ1 are non-negative weights that
are used to specify the relative importance of the overall
regularization term, the `2-norm of the factors, the smooth-
ness of the factors, and the sparsity of the coefficients, re-
spectively. The matrix E is the incidence matrix of the 4-
neighbourhood graph of the m ×m grid of the patch, such
that ‖E · ‖2 can be seen as a graph-based (semi)-norm that
takes the spatial connectivity of the patch bins into account.
Its main purpose is to ensure that the learned dictionary
atoms Φ1, . . . ,Φr are spatially smooth. We point out that
if spatial smoothness is undesirable, one can set λE=0.

Once we have found Φ and A, we obtain the estimated
matrix of clean displacement maps as Ȳ = ΦA ∈ Rm2×s,
which are then used to reconstruct the denoised point-cloud.
Please refer to the supplementary material for the motiva-
tion for using this particular form of the regularizer in (4).

Optimization: In order to optimize Problem (2), we use
a block-coordinate descent approach [20]. To this end, the
variables Φ and A are updated alternatingly, where for each
variable a gradient descent step of the loss function is con-
ducted first, followed by a proximal step for the regularizer.
The computation of the proximal operators of the regular-
izer is described in [6].

4. Experiments
4.1. General Denoising Settings

Dataset: For evaluating our denoising algorithm, we use
the models from [36], which include common meshes like
Bunny, Fandisk, Milk Bottle, Baseball and several meshes
with fine surface detail such as shoe soles (Supernova, Ter-
rex, Wander, Leather-Shoe) and Brain.

Patch computation: To work with similar parameters
across all models, we scale the models so that the bound-
ing box corresponds to a unit cube and sample 1000k points
from the surface and add different types of noise. We use a
neighborhood radius r = 0.03 (so that the patch length is
l ≈ 0.042) and m = 16 as patch dimension for all the mod-
els. The value for the radius was selected in such a way that
the patches are significantly larger compared to the noise
level (e.g. Gaussian noise with σ = 0.0075). Also we have
chosen the seed radius d the same as r to obtain overlapping
patches. Ideally, the patch length should be chosen such that
the r-neighbourhood contains only points within a topolog-
ical disk on the surface, which restricts it to be less than the

GT Noisy Plane fitting Cheng et al. MLSq Ours

Figure 4. Qualitative results of our method and a comparison with other denoising methods under Gaussian noise. From left to right we
show the following point-clouds: ground truth, noisy, denoised by plane-based method, denoised by [10], denoised by [4], and denoised
by our method. In the magnification of the high-curvature ear region of the bunny it can be seen that qualitatively our denoising method
achieves the sharpest results that appears closest to the ground truth. In addition, as shown in Table 1, quantitatively our method outperforms
the other approaches.

noisy plane [10] [4] Ours
4.93e-03 3.21e-03 6.46e-03 2.40e-03 1.60e-03

Table 1. Summary of the results of denoising 9 shapes (Section
4.1 - Eg. Bunny, Fandisk, Supernova, etc.). The values represent
the mean of RMS point-to-mesh error (relative to bounding box) of
different algorithms for Gaussian noise with σ = 0.0025, 0.005 and
0.075, for 10 shapes. For exact result of each shape with different
noises, please refer to the supplementary document. A qualitative
result of one such shape (Bunny) is provided in Figure 4.

distance between surface points and the shape medial axis.
However, because of our robust patch fitting and the han-
dling of missing data during matrix factorization, we can
generously extend this limit. We have empirically found
the chosen radius of r = 0.03 to perform well and thus we
used it in all the experiments with the meshes from [36].

Matrix factorization: For all point-clouds we normal-
ize the parameters of the matrix factorization such that they
are invariant to the problem size. With that, we set the pa-
rameters to λ = 6.4m

2s
r , λ2 = 10−5 1

m2 , λE = 2·10−5 1
m2

and λ1 = 45 1
s . The number of dictionary atoms r is set to

50 for all the point-clouds. Figure 4 shows the qualitative
results of our method under Gaussian noise. Experiments
are described later with more details.

4.2. Evaluation of Design Choices

Robust patch computation: Fig. 5 illustrates, qualita-
tively, how our patch computation method outperforms both
(i) simple PCA based approach (left), and (ii) RANSAC
plane fitting approach (middle). Obtaining local reference
frames for patches using simple PCA results in consider-
ing the entire cloud neighborhood which does not align
the patch well to the underlying surface in noisy and sharp
neighborhoods, whereas our approach aligns it well. Also,
robust plane fitting can accommodate outliers far away from
the patch region which is not desired. Our method is resis-
tant to both of the unwanted characteristics.

When the amount of noise is small and the patch size

Our Robust Patch
Fitting

PCA RANSAC Plane
Fitting

Figure 5. Comparison of patch orientation and location based on
PCA (left), RANSAC-based plane fitting (right) and our robust
patch fitting method (right) on similar structures (ear region of the
bunny model).

is also sufficiently small, the commonly used PCA-based
patch fitting is reasonable. In this case, with a sufficiently
large amount of random samples, our method becomes
close to such a PCA-based approach, which we also demon-
strate experimentally: With an added noise with σ = 0.0025,
for the bunny model the error with the PCA-based patch
computation results in an RMS error of 6.61e-04, in com-
parison to 7.17e-04 with our method. However, for more se-
vere noise or larger patches, the assumption that the points
within a neighborhood are (approximately) normally dis-
tributed breaks, and hence the PCA-based approach is not
suitable anymore. Experimentally, we found that with a
larger noise of σ = 0.005, the error increases to 1.52e-03
with the PCA-based approach, in comparison to 1.15e-03
with our method. Hence, our proposed patch extraction
method is particularly well-suited for computing patches in
highly noisy areas and complicated shapes.

Evaluation of matrix factorization method: We have
also evaluated the matrix factorization method without our
generalization to handle missing data, cf. (3). In this case,
for learning the dictionary we replace each missing value
in the input matrix Y by the average value taken over all
patches. On the bunny model, this results in an RMS of
8.42e-04 for σ = 0.0025 (compared to 7.17e-04 for our
implementation) and for σ = 0.005 in an error of 1.15e-03
(similar as our implementation 1.15e-03).

Moreover, in Table 1 (and the corresponding table in
supplementary material) the column ‘plane’ corresponds to

Figure 6. Result of our denoising algorithm with uniform noise
(50% of input points) in addition to Gaussian noise (σ = 0.0025).
For the model Fandisk the RMS error after denoising is 8.05e−04
(in comparison to 8.12e−04 in the experiment without white
noise). Hence, our denoising algorithm is resistant to outliers.

a

b

a

bNoisy Denoised

Figure 7. Result of our denoising algorithm when the noise is
added in the direction of camera. The left part shows the noisy data
and the right part shows the denoised output. It can be seen that
our method consistently removes the noise from the surface per-
pendicular to the camera direction (where the maximum amount
of noise occurs, see region a) and that it does not alter much when
the surface is parallel to the camera direction (places where the
surface is mostly unaffected by the added noise, see region b).

simply running our robust patch extraction method with-
out any dictionary learning. It can be understood as fix-
ing the displacement maps to contain the constant values 0.
When comparing this to the result of running our full ap-
proach (with matrix factorization), we can see a significant
improvement when using the matrix factorization.

4.3. Comparison to Other Methods

To get a better understanding of the denoising perfor-
mance of our method, we perform extensive experiments
with the simple i.i.d. Gaussian noise in different point-
clouds, and compare our results with the denoising algo-
rithm of (i) Cheng et al. [10], (ii) moving least-squares [4],
and (iii) the plane-based approach described in the previous
paragraph (i.e. our method without matrix factorization).
For [4] we use the implementation in Point Cloud Library
(PCL) [35]. The recent work of [10] uses octree decomposi-
tion followed by a modified ‘meshless’ Laplacian smooth-
ing and claim to be better, in terms of details retained, as
compared to Voronoi based algorithms such as Cocone and
RobustCocone [13, 15]. We could not compare our results
with another non-local based method [34] because of the
lack of the availability of the source code.

Noisy Denoised

Figure 8. Top: Denoising of a point-cloud with noise obtained by
a Kinect simulator [7] (parameters: r = 0.05, m = 16). Note
the removal of typical fringe patterns in both the raw depth scan
(zoomed version). See supplementary material for a larger image.

Since points are sampled from the meshes, we use Root
Mean Square (RMS) point-to-mesh error (relative to the
bounding box as evaluation metric, which is reported in Ta-
ble 1 (and the corresponding table in supplementary mate-
rial). It can clearly be seen that quantitatively our method
performs better than both [10] and [4] on both the set of
common models (Bunny, Fandisk, Milk bottle, etc.) and the
shoe soles model with high surface detail. A visual compar-
ison of the results is provided in Figure 4.

Uniform noise: Due to the employed robust patch fitting
procedure, our method naturally deals with outliers without
the requirement of any additional preprocessing or outlier
removal steps. We perform further experiments to validate
this, where, in addition to Gaussian noise, we randomly add
a total number of 50% of the initial number of points from
a uniform distribution to the point-cloud (within the bound-
ing box). We run our denoising algorithm on such noisy
data and provide our results in Figure 6. Experimentally we
have found that adding a significant amount of uniformly
distributed outliers does not impact our method.

4.4. Evaluation of Different Noise Models

Many of the existing point-cloud denoising techniques
are closely tied to a reconstruction algorithm itself [42, 41],
where the main objective is to achieve a better reconstruc-
tion. In contrast, in this work we provide a generic method
for processing and denoising point-clouds. Hence, in order
to get a better understanding of our algorithm with respect
to these regards, in the previous sections we have exten-
sively evaluated it based on i.i.d. Gaussian noise and com-
pared it with other methods that solve the same problem.
To complement these evaluations, in this section we pro-
vide additional experiments with different types of noise in
order to see how well our method generalizes to varying
scenarios. Here, our aim is to analyze the general perfor-
mance of our method under different types of noise com-
monly observed in real-world applications (e.g. data of dif-
ferent scanner types).

Noise perpendicular to the surface: In this experiment

noisy [10] [4] Ours
Bunny 4.99e-03 1.19e-01 2.56e-03 1.28e-03
Fandisk 4.94e-03 7.76e-02 2.55e-03 1.45e-03

noisy [10] [4] Ours
Bunny 1.71e-03 8.92e-04 7.49e-04 4.68e-04
Fandisk 2.08e-03 9.51e-04 1.31e-03 5.66e-04

Table 2. Comparison of RMS error (relative to bounding box) for denoising methods under different noise models. Left: Noise perpendic-
ular to the surface. Right: Noise in the direction of the camera.

we add i.i.d. Gaussian noise in the direction of the surface
normal, and then use our method to denoise the noisy point-
cloud. Since our method denoises values that are displace-
ment maps along the normal of the computed patch center,
this can be considered as the simplest noise model for our
method. The quantitative result for this noise model with σ
= 0.005 is provided in Table 2 (left).

Noise towards camera: Analyzing the noise that arises
in Kinect scans is an important topic of research in the
vision community because of the immense popularity of
Kinect for capturing depth maps [31, 23]. It has been found
that in Kinect data the axial noise (noise in the depth mea-
surement towards the camera direction) varies significantly
and to a large extent with the depth, in comparison to the
lateral noise (noise perpendicular to the camera direction)
[31]. Motivated by this we investigate a noise model where
we add i.i.d. Gaussian noise in the direction of a virtual
camera. To make the setup more realistic we scale the shape
Bunny and Fandisk so that they have a bounding box of size
50cm, and place the virtual camera at 1.5 meters from the
center. Following [31], we added Gaussian noise of stan-
dard deviation σ = 0.003 meters in the direction of the
camera to all the points. We apply our denoising algorithm
along with the two other methods and show the quantita-
tive and qualitative results in Table 2 (right) and Figure 7
respectively.

Kinect simulator: Directional noise provides a good ap-
proximation of the axial noise from Kinect depth maps, but
it does not provide several other typical artifacts of Kinect,
e.g. occlusion boundaries, noise due to distance between IR
projector and IR camera, projection patterns etc. For this
we use the Kinect simulator provided by [7] and produce a
point-cloud for the bunny mesh. We then use our algorithm
for denoising and show the result in Figure 8. Even though
this noise is far from Gaussian, our method handles it well.

4.5. Real-World Applications

Denoising point-clouds from a range scanner: We use
our method to denoise the data obtained from a structured
light scanner (provided by [34]), for which we show quali-
tative results in Figure 9. It can be seen that the result of our
method visually looks better compared to the other methods
and the input raw point-cloud.

Denoising for reconstruction: Denoising methods are
often targeted specifically to improve the quality of recon-
struction from a noisy point-cloud [10]. Hence, in this ex-
periment we reconstruct a point-cloud after denoising with
our method and show the qualitative result in Figure 10. As

Figure 9. Denoising result from a range scanner. From left to
right we show raw scanned data, denoising results from Cheng
et al. [10], MLS [4] and ours. Parameters: r=0.25,m=16. A
zoomed version is provided in supplementary material.

Figure 10. Qualitative reconstruction result by the Ball Pivoting
method implemented in [19] for noisy cloud (Left), denoised cloud
by [10] (Middle) and denoised cloud from our method (Right). It
can be seen that our method preserves surface details very well.

a proof-of-concept, these results show that our method can
also be used as a preprocessing step for increasing the qual-
ity of reconstruction.

5. Conclusion

In this work we have presented a method for denoising
point-clouds based on dictionary learning. To this end, we
robustly extract local planar patches (that represent fixed-
length displacement maps) from a given point-cloud. In or-
der to denoise the point-cloud, we denoise the displacement
maps based on dictionary learning, and then reconstruct
the point-cloud from the denoised patches. Our dictionary
learning generalizes the recent structured low-rank matrix
factorization [20] so that it can also handle displacement
maps with missing data, which is crucial for the proposed
denoising method. A particular strength of our method is
that it learns a new point-cloud-specific dictionary fo each
denoising task. It therefore works under a wide range of dif-
ferent types of noise, which we have also confirmed exper-
imentally. Overall, we have shown that our point-cloud de-
noising framework handles various common types of noise
better then previous methods. In the future, we also plan
to explore further point-cloud processing tasks within this
framework, such as point-cloud inpainting.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. J. Guibas.

Representation learning and adversarial generation of 3d
point clouds. CoRR, abs/1707.02392, 2017. 2

[2] M. Aharon, M. Elad, and A. Bruckstein. K -svd: An al-
gorithm for designing overcomplete dictionaries for sparse
representation. Signal Processing, IEEE Transactions on,
54(11):4311–4322, Nov 2006. 2

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Point set surfaces. In Proceedings of the Confer-
ence on Visualization ’01, VIS ’01, pages 21–28, Washing-
ton, DC, USA, 2001. IEEE Computer Society. 2

[4] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graphics,
9(1):3–15, Jan 2003. 2, 6, 7, 8

[5] M. Atzmon, H. Maron, and Y. Lipman. Point convolu-
tional neural networks by extension operators. arXiv preprint
arXiv:1803.10091, 2018. 1

[6] F. Bernard, P. Gemmar, F. Hertel, J. Goncalves, and J. Thun-
berg. Linear shape deformation models with local support
using graph-based structured matrix factorisation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5629–5638, 2016. 5

[7] J. Bohg, J. Romero, A. Herzog, and S. Schaal. Robot arm
pose estimation through pixel-wise part classification. In
2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 3143–3150, May 2014. 7, 8

[8] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 3189–3197, 2016. 1

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eu-
clidean data. Arxiv Preprint arxiv:1611:08097 (IEEE Signal
Processing Magazine), 2017. 2

[10] S. Cheng and M. Lau. Denoising a point cloud for surface
reconstruction. CoRR, abs/1704.04038, 2017. 2, 6, 7, 8

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image
denoising by sparse 3-d transform-domain collaborative fil-
tering. IEEE Transactions on image processing, 16(8):2080–
2095, 2007. 2

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d
image denoising with shape-adaptive principal component
analysis. In SPARS’09-Signal Processing with Adaptive
Sparse Structured Representations, 2009. 2

[13] T. K. Dey and S. Goswami. Provable surface reconstruction
from noisy samples. Computational Geometry, 35(1):124 –
141, 2006. Special Issue on the 20th ACM Symposium on
Computational Geometry. 2, 7

[14] T. K. Dey and J. Sun. An adaptive mls surface for recon-
struction with guarantees. In Proceedings of the Third Eu-
rographics Symposium on Geometry Processing, SGP ’05,
Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics
Association. 2

[15] T. K. Dey and L. Wang. Voronoi-based feature curves extrac-
tion for sampled singular surfaces. Computers & Graphics,
37(6):659–668, 2013. 2, 7

[16] J. Digne, R. Chaine, and S. Valette. Self-similarity for ac-
curate compression of point sampled surfaces. Computer
Graphics Forum, 33(2):155–164, 2014. 1, 2

[17] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Transactions on Image processing, 15(12):3736–3745, 2006.
1

[18] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image anal-
ysis and automated cartography. In Readings in computer
vision, pages 726–740. Elsevier, 1987. 4

[19] L. Giaccari. Surface reconstruction toolbox 0.2, 2011. 8
[20] B. Haeffele, E. Young, and R. Vidal. Structured low-rank

matrix factorization: Optimality, algorithm, and applications
to image processing. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 2007–
2015, 2014. 5, 8

[21] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or.
Consolidation of unorganized point clouds for surface recon-
struction. 28, 12 2009. 2

[22] V. Jain and S. Seung. Natural image denoising with convo-
lutional networks. In Advances in Neural Information Pro-
cessing Systems, pages 769–776, 2009. 1

[23] K. Khoshelham and S. O. Elberink. Accuracy and resolution
of kinect depth data for indoor mapping applications. Sen-
sors, 12(2):1437–1454, 2012. 8

[24] R. Kolluri. Provably good moving least squares. ACM Trans.
Algorithms, 4(2):18:1–18:25, May 2008. 2

[25] M. Lebrun. An analysis and implementation of the bm3d
image denoising method. Image Processing On Line, 2:175–
213, 2012. 2

[26] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary
learning for sparse coding. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09,
pages 689–696, New York, NY, USA, 2009. ACM. 2

[27] J. Mairal, M. Elad, and G. Sapiro. Sparse representation for
color image restoration. IEEE Transactions on Image Pro-
cessing, 17(1):53–69, Jan 2008. 2

[28] B. Mederos, L. Velho, and L. H. de Figueiredo. Robust
smoothing of noisy point clouds. In Proc. SIAM Conference
on Geometric Design and Computing, volume 2004, page 2,
2003. 2

[29] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model cnns. In CVPR, volume 1,
page 3, 2017. 1

[30] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and
A. Fitzgibbon. Kinectfusion: Real-time dense surface map-
ping and tracking. In Mixed and augmented reality (ISMAR),
2011 10th IEEE international symposium on, pages 127–
136. IEEE, 2011. 1

[31] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sen-
sor noise for improved 3d reconstruction and tracking. In

2012 Second International Conference on 3D Imaging, Mod-
eling, Processing, Visualization Transmission, pages 524–
530, Oct 2012. 8

[32] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
CVPR, 1(2):4, 2017. 1, 2

[33] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems, pages
5105–5114, 2017. 1, 2

[34] G. Rosman, A. Dubrovina, and R. Kimmel. Patch-
Collaborative Spectral Point-Cloud Denoising. Computer
Graphics Forum, 2013. 2, 7, 8

[35] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011. 7

[36] K. Sarkar, K. Varanasi, and D. Stricker. Learning quadrangu-
lated patches for 3d shape parameterization and completion.
In International Conference on 3D Vision 2017, 2017. 1, 2,
5, 6

[37] K. Sarkar, K. Varanasi, and D. Stricker. 3d shape processing
by convolutional denoising autoencoders on local patches. In
2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), 2018. 2

[38] G. Taubin. A signal processing approach to fair surface de-
sign. In Proceedings of the 22nd International ACM Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 351–358, 1995. 2

[39] B. Valiant and B. Levy. Spectral geometry processing with
manifold harmonics. Computer Graphics Forum, 27(2):251–
260, 2008. 2

[40] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. E. Solomon. Dynamic graph cnn for learning on point
clouds. Arxiv preprint arxiv:1801:07829, 2018. 2

[41] O. Wasenmller, M. Meyer, and D. Stricker. Augmented real-
ity 3d discrepancy check in industrial applications. In 2016
IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 125–134, Sept 2016. 7

[42] K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch,
O. Sorkine-Hornung, and A. Sorkine-Hornung. Point cloud
noise and outlier removal for image-based 3d reconstruc-
tion. In 2016 Fourth International Conference on 3D Vision
(3DV), pages 118–127, Oct 2016. 7

[43] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting
with deep neural networks. In Advances in neural informa-
tion processing systems, pages 341–349, 2012. 1

[44] M. Zhong and H. Qin. Surface inpainting with sparsity con-
straints. Computer Aided Geometric Design, 41:23 – 35,
2016. 2

