Supplementary material: Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks

Kripasindhu Sarkar^{1,2}, Basavaraj Hampiholi², Kiran Varanasi¹, and Didier Stricker^{1,2}

¹DFKI Kaiserslautern ²Technische Universität Kaiserslautern {kripasindhu.sarkar,basavaraj.hampiholi, kiran.varanasi,didier.stricker}@dfki.de

1 Introduction

In this short document, we provide the supplementary information for the paper 'Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional Networks' - referred as *Main Paper*.

2 Feature visualization

Figure 1 shows the visualization of the features of a few shapes.

3 Memory calculation

Table 1 and 2 provide the calculation of the memory in different networks, whose values are used in *Table 3 (Right), Main paper*.

4 ModelNet40 misclassified shapes

Table 4 shows some of the misclassified shapes for the ModelNet40 dataset.

5 Network for Multi-View DCGAN

Table 3 shows the detailed network architecture used in the experiments with MV-DCGAN (*Section 5.5, Main paper*).

References

1. Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: Learning deep 3d representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2017)

3

Fig. 1: Visualization of the multi-layered height-map descriptors of a few shapes. Each row represents a view direction (Z, X and Y in the order). Each column represent a layer (starting from 1 to 5). Note the distinctive features captured by the different layers - specially by the 1st and 5th layer. Eg, in the Z view of the car, tyres are captured by the 1st layer, hood and the roof by the 5th layer, while the seats and interiors like seats are captured by the intermediate layers.

Network Architecture	Activation olume	Volume size	Memory
input	256x256x256x1	16777216	67108864
$\operatorname{conv}(1, 8)$	256x256x256x8	134217728	536870912
$\operatorname{conv}(8, 14)$	256x256x256x14	234881024	939524096
maxpool(2)	128x128x128x14	29360128	117440512
conv(14, 14)	128x128x128x14	29360128	117440512
conv(14, 20)	128x128x128x20	41943040	167772160
maxpool(2)	64x64x64x20	5242880	20971520
conv(20, 20)	64x64x64x20	5242880	20971520
conv(20, 26)	64x64x64x26	6815744	27262976
maxpool(2)	32x32x32x26	851968	3407872
conv(26, 26)	32x32x32x26	851968	3407872
conv(26, 32)	32x32x32x32	1048576	4194304
maxpool(2)	16x16x16x32	131072	524288
conv(32, 32)	16x16x16x32	131072	524288
conv(32, 32)	16x16x16x32	131072	524288
maxpool(2)	8x8x8x32	16384	65536
Total		507002880	2028011520
			$\approx 1.89 \text{ GB}$

Table 1: Memory computation for DenseNet256[1] for one sample. For a batch size of 32 we get $32^{*}1.8 \approx 60$ GB of memory (*Table 3, Main Paper*). This value is also verified against the values in the plot provided in Figure 7(a) [1]

Network Architecture	Activation Volume	Volume size	Memory
input	256x256x5	327680	1310725
$\operatorname{conv}(5,64)$	256x256x64	4194304	16777221
conv(64, 64)	256x256x64	4194304	16777221
maxpool(2)	128x128x64	1048576	4194309
conv(64, 128)	128x128x128	2097152	8388613
conv(128, 128)	128x128x128	2097152	8388613
maxpool(2)	64x64x128	524288	2097157
conv(128, 256)	64x64x256	1048576	4194309
conv(256, 256)	64x64x256	1048576	4194309
conv(256, 256)	64x64x256	1048576	4194309
maxpool(2)	32x32x256	262144	1048581
conv(256, 512)	32x32x512	524288	2097157
conv(512,512)	32x32x512	524288	2097157
conv(512, 512)	32x32x512	524288	2097157
maxpool(2)	16x16x512	131072	524293
conv(512,512)	16x16x512	131072	524293
conv(512, 512)	16x16x512	131072	524293
conv(512, 512)	16x16x512	131072	524293
maxpool(2)	8x8x512	32768	131077
Total (branch)			$80084992\approx 80~\mathrm{MB}$
FC1	1x1x4096	4096	16389
FC2	1x1x4096	4096	16389
FC3	1x1x40	40	165
Total			≈ 112 MB.

Table 2: Memory computation for Our single view net using VGG for one sample. For a batch size of 32 we get $32*112 \approx 3.5$ GB of memory. But our experiments which was run using a PyTorch implementation for a batchsize of 32 occupies 8 GB of data in GeForce GTX 1080 Ti. We used this relaxed value of 8GB in *Table* 3 (*Right*), Main Paper for a more fare comparison against OctNet[1]. For OctNet we used the memory consumed in a similar settings using their representation and varified its value in the plot provided in the Figure 7(a) of [1].

<i>input</i> - 100x1	
convT(4x4, 512)	
ReLU	
convT(4x4, 256, (2,2))	<i>input</i> - 64x64x5
ReLU	conv(4x4, 64, (2,2))
convT(4x4, 128, (2,2))	LReLU(0.2)
ReLU	conv(4x4, 128, (2,2))
convT(4x4, 64, (2,2))	LReLU (0.2)
ReLU	conv(4x4, 256, (2,2))
convT(4x4, 5, (2,2))	LReLU (0.2)
Tanh	conv(4x4, 512, (2,2))
<i>output</i> - 64x64x5	<i>output</i> - 8x8x512

Table 3: (Left) The generative branch of the Multiview DCGAN which produces MLH vector of size 64x64x5. (Right) The discriminator part of the MV DCGAN which takes the generated 64x64x5 input and produces an activation volume of 8*8*512. In the multiview design we have 3 independent generator branches and 3 independent discriminator branches. The 3 output volume of the discriminator of the discriminator is concatenated by a non-commutative operation followed by FC(1024) and FC(1). More details are in *Figure 4, Main paper*. The numbers in the bracket (x,x) denote the stride values for the strided convolution and transposed convolution blocks. Batch-normalization is used between every layers except for the first and the last layers.

GT label	Predicted label	Misclassified shape	Sample from predicted label
plant	flower pot		**
vase	cup pot		
desk	table		2 ° ¢
night stand	dresser		
table	desk		

Table 4: Example of misclassified shape and a close looking sample from its predicted label in ModelNet40.