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1 Introduction

In this short document, we provide the supplementary information for the pa-
per ‘Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional
Networks’ - referred as Main Paper.

2 Feature visualization

Figure 1 shows the visualization of the features of a few shapes.

3 Memory calculation

Table 1 and 2 provide the calculation of the memory in different networks, whose
values are used in Table 3 (Right), Main paper.

4 ModelNet40 misclassified shapes

Table 4 shows some of the misclassified shapes for the ModelNet40 dataset.

5 Network for Multi-View DCGAN

Table 3 shows the detailed network architecture used in the experiments with
MV-DCGAN (Section 5.5, Main paper).
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Fig. 1: Visualization of the multi-layered height-map descriptors of a few shapes.
Each row represents a view direction (Z, X and Y in the order). Each column
represent a layer (starting from 1 to 5). Note the distinctive features captured
by the different layers - specially by the 1st and 5th layer. Eg, in the Z view of
the car, tyres are captured by the 1st layer, hood and the roof by the 5th layer,
while the seats and interiors like seats are captured by the intermediate layers.
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Network Architecture Activation olume Volume size Memory

input 256x256x256x1 16777216 67108864

conv(1, 8) 256x256x256x8 134217728 536870912
conv(8, 14) 256x256x256x14 234881024 939524096
maxpool(2) 128x128x128x14 29360128 117440512

conv(14, 14) 128x128x128x14 29360128 117440512
conv(14, 20) 128x128x128x20 41943040 167772160
maxpool(2) 64x64x64x20 5242880 20971520

conv(20, 20) 64x64x64x20 5242880 20971520
conv(20, 26) 64x64x64x26 6815744 27262976
maxpool(2) 32x32x32x26 851968 3407872

conv(26, 26) 32x32x32x26 851968 3407872
conv(26, 32) 32x32x32x32 1048576 4194304
maxpool(2) 16x16x16x32 131072 524288

conv(32, 32) 16x16x16x32 131072 524288
conv(32, 32) 16x16x16x32 131072 524288
maxpool(2) 8x8x8x32 16384 65536

Total 507002880 2028011520
≈ 1.89 GB

Table 1: Memory computation for DenseNet256[1] for one sample. For a batch
size of 32 we get 32*1.8 ≈ 60GB of memory (Table 3, Main Paper). This value
is also verified against the values in the plot provided in Figure 7(a) [1]
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Network Architecture Activation Volume Volume size Memory

input 256x256x5 327680 1310725

conv(5,64) 256x256x64 4194304 16777221
conv(64,64) 256x256x64 4194304 16777221
maxpool(2) 128x128x64 1048576 4194309

conv(64,128) 128x128x128 2097152 8388613
conv(128,128) 128x128x128 2097152 8388613
maxpool(2) 64x64x128 524288 2097157

conv(128,256) 64x64x256 1048576 4194309
conv(256,256) 64x64x256 1048576 4194309
conv(256,256) 64x64x256 1048576 4194309
maxpool(2) 32x32x256 262144 1048581

conv(256,512) 32x32x512 524288 2097157
conv(512,512) 32x32x512 524288 2097157
conv(512,512) 32x32x512 524288 2097157
maxpool(2) 16x16x512 131072 524293

conv(512,512) 16x16x512 131072 524293
conv(512,512) 16x16x512 131072 524293
conv(512,512) 16x16x512 131072 524293
maxpool(2) 8x8x512 32768 131077

Total (branch) 80084992 ≈ 80 MB

FC1 1x1x4096 4096 16389

FC2 1x1x4096 4096 16389

FC3 1x1x40 40 165

Total ≈ 112 MB.

Table 2: Memory computation for Our single view net using VGG for one sample.
For a batch size of 32 we get 32*112 ≈ 3.5GB of memory. But our experiments
which was run using a PyTorch implementation for a batchsize of 32 occupies 8
GB of data in GeForce GTX 1080 Ti. We used this relaxed value of 8GB in Table
3 (Right), Main Paper for a more fare comparison against OctNet[1]. For OctNet
we used the memory consumed in a similar settings using their representation
and varified its value in the plot provided in the Figure 7(a) of [1].
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input - 100x1

convT(4x4, 512)
ReLU

convT(4x4, 256, (2,2))
ReLU

convT(4x4, 128, (2,2))
ReLU

convT(4x4, 64, (2,2))
ReLU

convT(4x4, 5, (2,2))
Tanh

output - 64x64x5

input - 64x64x5

conv(4x4, 64, (2,2))
LReLU(0.2)

conv(4x4, 128, (2,2))
LReLU(0.2)

conv(4x4, 256, (2,2))
LReLU(0.2)

conv(4x4, 512, (2,2))

output - 8x8x512

Table 3: (Left) The generative branch of the Multiview DCGAN which produces
MLH vector of size 64x64x5. (Right) The discriminator part of the MV DCGAN
which takes the generated 64x64x5 input and produces an activation volume of
8*8*512. In the multiview design we have 3 independent generator branches and
3 independent discriminator branches. The 3 output volume of the discriminator
of the discriminator is concatenated by a non-commutative operation followed
by FC(1024) and FC(1). More details are in Figure 4, Main paper. The numbers
in the bracket (x,x) denote the stride values for the strided convolution and
transposed convolution blocks. Batch-normalization is used between every layers
except for the first and the last layers.
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GT label Predicted label Misclassified Sample from
shape predicted label

plant flower pot

vase cup pot

desk table

night stand dresser

table desk

Table 4: Example of misclassified shape and a close looking sample from its
predicted label in ModelNet40.


