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Denoising of point-clouds based on structured dictionary learning
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Figure 1: Given a noisy point-cloud, we first extract displacement maps defined over local patches that cover the entire point-cloud, which
are then denoised based on dictionary learning in order to obtain the clean displacement maps.

Abstract

We formulate the problem of point-cloud denoising in terms of a dictionary learning framework over square surface patches.
Assuming that many of the local patches (in the unknown noise-free point-cloud) contain redundancies due to surface smooth-
ness and repetition, we estimate a low-dimensional affine subspace that (approximately) explains the extracted noisy patches.
This is achieved via a structured low-rank matrix factorization that imposes smoothness on the patch dictionary and sparsity on
the coefficients. We show experimentally that our method outperforms existing denoising approaches in various noise scenarios.
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1. Introduction

There are various sensors and capturing methods to acquire real-
world objects as 3D point-clouds, but typically they are affected
by noise. Hence, point-cloud denoising is a necessary step before
using such unstructured data in applications. A common (but often
oversimplified) assumption is that the noise is Gaussian. Further-
more, point-clouds generally lack a regular structure or topology,
which makes their denoising more challenging compared to struc-
tured data that is defined over a regular grid, such as images.

In this work we propose a novel method for point-cloud denois-
ing based on a factorization of local square-shaped point-cloud
patches. Since the patches are fixed-length and regular, we can
employ machine learning methods to discover regular features
amongst them (Fig. 1). The technical contributions of our method
are as follows: (i) We present a method to robustly extract a col-
lection of patches covering the entire (given) point-cloud. Unlike
previous works, we neither require the patches to be exceedingly
small [DCV14], nor do we require an explicit meshing and quad-
rangulation step [SVS17]. Such restrictive assumptions may be
suitable for other contexts like point-cloud compression [DCV14],
but are not applicable for denoising. (ii) We propose a formula-
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tion of structured matrix factorization for 3D patches that handles
missing data. (iii)) We handle a wide range of noise characteristics,
including real-world 3D scanner noise, and demonstrate superior
denoising results compared to other methods.

2. Patch-based Point-Cloud Representation

Robust patch extraction: Given a 3D point-cloud X C R? com-
prising n points in 3D, we first select a subset of s seed points
Sty...,85 € R using a voxel-based downsampling method. For
each seed point S; we extract the patch P; = (¢;,R;,Y;), represented
as a triplet, that describes the local structure of the point-cloud
within the r-neighborhood N;(S;) € X C R? of S;. Given N;(S;),
the location of the center of the patch #; and its orientation R; are
computed by a RANSAC-like sampling strategy to obtain robust
patch locations. In each RANSAC iteration we fit a patch through
3 sample points and consider the point-to-patch distance (in con-
trast to the point-to-plane distance) for finding inliers. ¥; € R"*"
is the displacement map that we explain next.

Displacement map computation: We first represent the neigh-
borhood points N (S;) of the seed point S; in a local reference
frame that is defined by (#;, R;), then we project all points onto the
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Figure 2: Left: Result of our method and a comparison with other denoising methods under Gaussian noise of ¢ = 0.005. From left to right:
ground truth, noisy, denoised by plane-based method, denoised by [CL17], denoised by [ABCO*03], and denoised by our method. RMS
error (relative to bounding box) of the methods are noisy: 4.98¢-03, plane-fitting: 3.35e-03, [CL17]: 4.25¢-03, [ABCO*03]: 2.58¢e-03, and
ours: 1.15e-03. Right: Result of our denoising algorithm with uniform noise (50% of input points) in addition to Gaussian noise.

square patch, and eventually we sample the patch on an m X m grid.
The displacement value for each bin is then computed as the me-
dian of all “z-coordinates” of the points that fall in that particular
bin. In addition, for each point, we keep track of the information
to which patch and to which bin of each displacement map it falls
during the patch computation. This correspondence information is
used for the reconstruction of the shapes from the patches.

3. Denoising by Dictionary Learning

Once we have extracted the local patches, we use dictionary learn-
ing to denoise them, which we describe next.

Matrix factorization: Let y; := vec(Y;) € RY, g=m?, be the vec-
torization of ¥;, and let Y = [yy,...,ys] € R?** be the matrix that
contains the mean-centered vectorized displacement maps. With
that, we find a low-dimensional subspace that approximates the
noisy Y, which we phrase as the matrix factorization problem

min U(Y, @A)+ Q(D,A), (1)

where ® € R?*" is the factor matrix that contains r dictionary
atoms in its columns, and A € R™** contains the coefficients in
order to reconstruct Y using the dictionary &. Here, the function
£(+) is the loss function that measures how well the factorization
PA approximates the given Y, and Q(-) is a regularizer that has the
purpose to impose desirable properties upon ¢ and A.

Denoising: Due to appealing theoretical properties regarding op-
timality, as well as a promising performance in various applications
(e.g. [BGH™16]), for tackling Problem (1) we build upon the struc-
tured low-rank matrix factorization framework [HYV14]. We use
a binary matrix M € {0,1}7** that masks out unobserved data in
the displacement map matrix Y, and define the loss function as

(Y, @A) :=|M© (Y - PA)||F, ®)

such that the error when approximating Y using the factorization
A is measured in a weighted least-squares sense. We choose the
regularization term Q(-) to impose sparsity on the coefficients A,
and to impose spatial smoothness and ¢,-regularization upon the
dictionary. Our regularizer, motivated by [BGH" 16], is given by

Q(@,A) =AY (1D llolIAT: la, 3)
i—=1

i=

where for y € R? and z € R® we define the norms as ||y|ly =

Figure 3: Left: Result of our denoising algorithm when the noise is
added in the direction of camera. Right: Denoising of a point-cloud
with noise obtained by a Kinect simulator.

M|yl +Ae||Ey|l2 and ||z]|la = A1l|z||1- The matrix E is the inci-
dence matrix of the 4-neighbourhood graph of the m x m grid of the
patch, such that ||E - ||, accounts for spatial smoothness. Once we
have found & and A for a given Y, we obtain the estimated matrix
of clean displacement maps Y = ®A € R?**, which are then used
to reconstruct the denoised point-cloud.

4. Results

Fig. 2 summarizes our denoising results with i.i.d. Gaussian noise
and uniform noise. Fig. 3 shows results on directional noise and
noise generated by a Kinect simulator.
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