
Simple domain adaptation for CAD based object recognition

Anonymous Author

Keywords: 3D object recognition; Domain adaptation; CNN

Abstract: We present a simple method of domain adaption between synthetic images and real images by high quality
rendering of the 3D models and correlation alignment. Using this simple method, we solve the problem of
3D object recognition in 2D images by fine-tuning existing pretrained CNN models for the object categories
using the rendered images. Experimentally, we show that our rendering pipeline along with the correlation
alignment improve the recognition accuracy of existing CNN based recognition on rendered images by a
canonical renderer by a large margin. Using the same idea we present a general image classifier of common
objects which is trained only on the 3D models from the publicly available databases, and show that a small
number of training models are sufficient to capture different variations within and across the classes.

1 INTRODUCTION

3D model based object recognition is the method
for automatically identifying a 3D object from a
database, given an input image taken from a close
range. Often the catalogue contains only 3D CAD
models or 3D scans of different object, and identi-
fying them in images in traditional way will require
creating image database from actual photographs of
each object in the catalogue - which may be imprac-
tical. Therefore, existing approaches extract visual
information from the 3D models and use them in
a standard off-the-shelf recognition pipeline (Collet
Romea et al., 2011; Sarkar et al., 2016; Sarkar et al.,
2017). This is done either by extracting and augment-
ing 2D-local-features to the 3D location of the CAD
model followed by feature-matching based recogni-
tion (Sarkar et al., 2016), or using a powerful CNN
and solve the problem of classification (with recogni-
tion instances as classes) using the rendered images
of the 3D models (Sarkar et al., 2017).

In spite of the fact that CNN based methods have
progressed the state of the art results significantly for
tasks related to images, the progress on 3D model
based object recognition using CNN has not been sub-
stantial. For example, solving the task of recogni-
tion on rendered images of the 3D models in (Sarkar
et al., 2017) achieved an 8% increase of recognition
recall w.r.t. the local-feature base recognition. This
is a big improvement over the feature-matching based
methods, but is not comparable to the improvement
achieved by CNN based methods in other areas where
only real images are used for training(Krizhevsky
et al., 2012; Ren et al., 2015; Ren et al., 2015). In

this paper, we provide a simple method for bridging
the gap between rendered and real images in an aim to
significantly improve the results on recognition com-
pared to the previous CNN related solutions.

Other than the problem of CAD based object
recognition, learning categories or class labels of im-
ages just by using 3D models is also an important
problem. This is because one single 3D model con-
tains a lot more information than one particular view
or image of that model. But in spite of the afore-
mentioned fact, the rendering of a 3D model lie in
a significantly different domain compared to its real
image. In this work, by using high quality render-
ing and a simple concept of correlation alignment, we
decrease the gap between the domains of real and ren-
dered images and provide a high performing classifi-
cation system which is trained only using 3D models.
We exploit the advances in computer graphics render-
ing techniques to improve the vision task of 3D model
based recognition and classification.

Our contributions are the following:

1. We resolve the domain between synthetic images
and real images by the combination of high qual-
ity rendering and a simple method of correlation
alignment inspired by (Sun et al., 2015).

2. In the presence of accurate 3D models, we use our
domain adaptation method and beat the existing
state-of-art CAD based recognition in 2D images
by a large margin wrt. both local-feature based
and CNN based recognition system.

3. In the absence of accurate 3D models we use the
domain adaptation and provide an accurate real-
time classification system of common objects in



office-desks, trained only on the 3D models from
the publicly available dataset.

The demonstration video of the real-time classifi-
cation/recognition system of the common objects in
provided in the supplementary materials.

2 RELATED WORK

CNN based object classification
AlexNet(Krizhevsky et al., 2012) was the first
deep CNN model trained in GPU for the task of
classification, and is still often used as the base
model or feature extractors for performing other
tasks. Other famous models which are often used
as base CNN are VGG (Simonyan and Zisserman,
2014), GoogLeNet (Szegedy et al., 2015a), ResNet
(He et al., 2015), InceptionV3/V4 (Szegedy et al.,
2015b). VGG is a simple network which uses a series
of small convolution filters of size 3× 3 followed
by fully connected layers. Due to its simplicity, we
use the configuration of AlexNet in our network and
fine-tune the weights based on our requirements.

Use of rendered images in vision These methods
render 3D models using computer graphics pipeline
and uses the rendered images as to augment the train-
ing data for the problem involving 2D images. (Peng
et al., 2014) used rendering of similar looking 3D
models of some of the categories of PASCAL VOC
dataset (Everingham et al., 2010) to augment the
training dataset, and found it to perform superior to
training on only the given training set. (Su et al.,
2015b) used image of rendered 3D models to augment
PASCAL 3D+ dataset to improve results on viewpoint
detection. (Sarkar et al., 2017) uses only the rendered
images as training set for 3D model recognition using
CNN. In contrast to their work a) we render highly
realistic images using powerful rendering engine b)
bridge the gap further using correlation alignment of
CNN feature c) achieve a large margin of improve-
ment on recognition accuracy in comparison to them.

Feature based object recognition Feature-
augmented 3D models are created by performing
Structure From Motion (SFM) on the training images
taken of the object to be recognized. This association
of 3D points - to - 2D descriptors, as a result of
SFM, forms the pillar of most of the feature based
detection, where the features extracted from a given
input image, are matched to that of the feature
augmented 3D models and subsequently, a 6 DOF
recognition is made (Skrypnyk and Lowe, 2004;

Hao et al., 2013; Collet Romea et al., 2011; Collet
Romea and Srinivasa, 2010; Irschara et al., 2009).
(Sarkar et al., 2016) provided a new method for
creating feature-augmented models in the presence
of accurate 3D models at the training time. They
used the texture-map of the 3D models to assign
2D features to the 3D points of the model, and in
the second method, took rendered virtual snapshots
to group 2D features assigning to the 3D points.
In contrast we use high quality rendered images to
train CNN and outperform the result of recognition
accuracy of this work.

Domain adaptation There has been several work
on the line of adapting domain from different dis-
tributions. Geodesic methods bridge the source and
target domain by projecting source and target onto
points along a geodesic path (Gopalan et al., 2011).
DLID trains a joint source and target CNN architec-
ture for domain adaptation (Chopra and Balakrishnan,
2013). DAN (Long et al., 2015) and DDC (Tzeng
et al., 2014) directly optimize the deep representa-
tion for domain invariance. Correlation Alignment
or CORAL (Sun et al., 2015) is one of the simplest
domain adaptation system where the whitened source
features are recolored using target covarience. Be-
cause of its simplicity we adapted our method from
this idea.

3 APPROACH

The focus of our work is to perform the task of ob-
ject recognition of a dataset of 3D models in 2D query
images. That is, we train only using the 3D models in
the database and use the trained model for recogni-
tion during the test time (in query 2D images). As
mentioned in the previous section we use a 2D CNN
based pipeline (over local feature based pipeline) for
this task because of its huge success in the general
tasks of classification, recognition and detection.

Given a database of 3D models we take virtual
snapshots of each model from different views with
high quality rendering settings. Using this set of high
quality images and a simple adaptation of the final
features by correlation alignment (with the test im-
ages) we fine-tune a pretrained model for the task
of recognition of the 3D instances. The following
subsection describes the rendering settings in details
for the aim of bridging domain gap. Section 3.2 in-
troduces the idea of correlation alignment, which is
followed by Section 3.3 containing the details of the
CNN framework to work with and without correlation
alignment.



Assumption of 3D models We assume that the 3D
models in the database are upright oriented along a
consistent axis. This assumption holds true for most
of the publicly available databases (Wu et al., 2015;
Chang et al., 2015a), and has been use extensively
by popular shape analysis methods (Su et al., 2015a;
Johns et al., 2016; Qi et al., 2016; Maturana and
Scherer, 2015). The information from the gravity di-
rection is used in different settings for rendering - like
lights and viewpoints.

3.1 Rendering scheme

When we train a CNN on rendered images with the
aim of using it on real images, the aim is to have the
rendering as realistic as possible. Therefore, we use
a dedicated rendering engine (Blender) with the fol-
lowing aim. (1) The rendered images are realistic.
(2) The collection of the rendered images are overfit-
resistant. The rendering settings with their motiva-
tions are outlined in the following paragraphs.

General rendering ideas Rendering is the process
of creating a 2D image from a 3D scene. The fi-
nal image is based on factors such as Camera set-
tings, Lighting settings, Material and the render set-
tings. First we start with the light settings and later
we describe the different types of material settings
(shaders). Please note that, the light work together
with the shaders and therefore the following sections
are not independent.

3.1.1 Lighting

Lighting/shading is one of the most important factors
for realistic rendering. Even though rotation and scale
invariance are taken care by data augmentation with
random crops and rotations of the training images
(Krizhevsky et al., 2012), incorporation of lighting in-
variance is not technically feasible when training is
performed with real images. To mitigate this prob-
lem, the training set containing real images are of-
ten increased to cover instances with different lighting
conditions. The presence of 3D models along with an
advanced rendering pipeline gives us a big advantage
on generating training images with different lighting
conditions. Observing the lighting patterns in general
scenarios, we experimented with the following light-
ing settings.

• Uniform directional light: We place a directional
light of moderate intensity (from the top to bot-
tom) which provides a uniform light from the top
on every objects. We keep this light on for all ren-
dered images.

Background

Directional 
Rays

Lamps

3D models
(with different material 

properties)

Camera

Figure 1: Overview of our rendering pipeline. See Section
3.1 for details

• Point light at the camera: Point light is a light
which radiates the same amount of light in all di-
rections. The light intensity/energy decays based
on the distance from the light to the object. We
fix a low intensity point light at the location of the
camera for all the renderings. This light is added
to better highlight the textures and provide a well
illuminated environment. In highly accurate 3D
models which contains significant textures, this
light has been crucial. If we just use this light (and
ignore all other lights), the setting will reduce to
the default rendering settings of popular rendering
toolkits such as VTK and MeshLab.

• Random point lights Along with the two afore-
mentioned lights which is fixed for all the render-
ing, we add 0 to 6 moderate intensity point lights
(the actual number chosen at random) at random
location at a distance 8 to 20 times the size of the
object. We found this range of distance to add soft
shadows similar to the real images of a model.

All the light sources are added to produce both
Specular highlights, Diffuse shading and as well as
ray-traced soft shadows.

3.1.2 Materials

In the presence of accurate 3D models (eg. in Wave-
front .obj model), we use the material properties
present in the models - which includes the diffuse
colors/intensity, specular exponent, transparency etc.
Also based on our observation, we found that a flat
shading is realistic (over the default smooth shad-
ing) in the presence of precise 3D models (scanned
through an accurate 3D scanner). This is due the
high amount of details present in the models which
needs no further smoothing, and the normal map in
the faces are good enough to produce high quality
shading. Therefore, we use the following configura-
tions:

Accurate 3D scans: With accurate 3D scans (Eg.
high texture dataset from (Sarkar et al., 2016)), we use



flat shading with the material properties taken from
the settings available in the scans. In the absence of
material properties, we use a Lambert diffuse shader
(factor of 1 - or max intensity) and a low intensity
specular shader of high hardness. This is in congruent
to the test images of the corresponding 3D models as
well as the observation common objects.

Models from publicly available datasets: The
models from the publicly available databases are of-
ten hand designed and not accurate to the real objects
(in comparison to the 3D models which are scanned
through a 3D scanner). Therefore smooth shading
(which is also the default settings in many render-
ing engines) is more suitable for these kind of mod-
els. We use an ‘auto smooth’ functionality to combine
both smoothing of normal and preserving sharp edge
- edges where an angle between the faces is smaller
than 30 degrees are smoothed. All the materials are
chosen to cast and receive shadows.

3.1.3 Background

As discussed before along with the aim of making the
rendering realistic, we also make the rendered images
overfit resistant. We do this by adding different back-
grounds to the rendered image with the above men-
tioned settings. Following (Sarkar et al., 2017), we
use 3 different backgrounds for one rendered image
(with transparent background) - a) white background,
b) random background from PASCAL dataset (Ever-
ingham et al., 2010) (without having any conflicting
classes with our instances) c) background involving a
table - which resembles test images. Therefore we get
three times the number of images in the training set as
the rendered images.

3.1.4 Views

When the class or the class of recognition instance be-
longs to one of the classes in PASCAL3D dataset (Xi-
ang et al., 2014) (for example chairs), we sample the
azimuth, elevation and in-plane rotation of the cam-
era from a distribution estimated from the real image
training set of PASCAL3D. In the absence of such
categories sample it from a uniform distribution with
the range adjusted to the categories. For example, for
the instance Totem which is a thin and tall shape, the
elevation angle between 0 and 45 degrees (so that top
views are avoided), whereas for keyboard, the eleva-
tion angle is chosen between 30 and 80 degrees (so
that extreme side views are avoided).

3.2 Correlation Alignment

Training on our realistic and overfit resistant set of im-
ages already gives us a big advantage over the simple
rendering based systems (Section Result). We further
apply a very simple, yet effective, method of Corre-
lation Alignment of source and target feature distri-
bution to further minimize the domain gap between
the rendered images and real images. In short, the
method, which is motivated by (Sun et al., 2015),
aligns the input feature distributions of the source and
target domains by minimizing the difference between
their second-order statistics. Simply put, given the
source feature set S, and target T , we perform the fol-
lowing steps to align the correlation of S to T to get
the adapted feature set S′.

Correlation Alignment algoritm.
1. Compute convenience matrix of both S and T .
2. Whiten S using its covariance matrix to get Sw.
3. Recolor Sw with target covariance to get S′.

Even though the method is simple, it is shown to
be as good as other specialized methods (Sun et al.,
2015). Since we are using CNN for solving the task
of classification, we can either treat the base CNN as
a feature extractor to get source and target features
for domain adaption, or use a specialized version of
Correlation Alignment for CNN where we add a spe-
cialized loss (which is the frobenius norm between
source and target features) along with the classifica-
tion (or regression) loss while training the CNN. The
exact method of using the adaptation in CNN is de-
scribed in the next section.

3.3 CNN architecture

We use the eight layer ‘AlexNet’ as our neural net-
work architecture ((Krizhevsky et al., 2012)) for train-
ing and testing because of its popularity and simplic-
ity. Even though recent deep networks like VGGNet
(Simonyan and Zisserman, 2014), or recent ResNet
(He et al., 2015) should work better, our experiments
on the with 5 categories (from the dataset by (Sarkar
et al., 2016)), we found AlexNet to be sufficient for
the recognition task. This also enabled us an easy
comparison with (Sarkar et al., 2017).

3.3.1 Finetuning with correlation alignment

There are specialized methods of using Correlation
Alignment in CNN, which essentially adds a factor
- correlation mismatch between the source and target
domain - in the original loss (Sun and Saenko, 2016).
This requires processing a batch of test images in ev-
ery training iteration. We further simplify this by do-



Table 1: Comparison of object recognition recall of our system with local-feature based method (feature augmented models
using the settings snap2 and tmap in (Sarkar et al., 2016) + online matching using MOPED (Collet Romea et al., 2011)) and
CNN based method without specialized rendering (Sarkar et al., 2017). Boldface numbers highlights the best and underlined
numbers highlights the second best performing values.

Models snap2 tmap
(Sarkar et al., 2016) (Sarkar et al., 2016) (Sarkar et al., 2017) our-r

Milk-carton 0.88 0.71 0.81 0.98
Totem 0.83 0.21 0.98 0.99
Lion 0.89 0.63 0.74 0.98
Whitener 0.48 0.63 0.77 0.95
Matriochka 0.58 0.62 0.64 1
Average 0.73 0.56 0.79 0.98

ing the following. At first, we compute and store the
convenience of the target CNN features (from the last
FC layer - using the real test images). And then during
training (using rendered images), before computing
the final loss, we transform the features (by whitening
and subsequently recoloring with the target distribu-
tion) to target domain as explained in Section 3.2.

4 EXPERIMENTAL RESULTS

4.1 3D model based object recognition

In this section we provide our results for the prob-
lem of object recognition of 3D models in 2D images
when the models are of very high quality, and where
the very closely resemble real objects. For that, we
use the subset of the high-texture dataset provided by
(Sarkar et al., 2016). In brief, the dataset contains
5 textured meshes - Lion, Totem, Matriochka, Milk-
carton and Whitener and a set of test images. The
test image set contains in total around 3000 images of
the real objects corresponding to the provided meshes.
The meshes represents accurate version of the real ob-
jects and has been reconstructed by a high quality 3D
scanner of 3Digify (3Digify, 2015).

4.1.1 Rendered images

We took the ideas presented in Section 3.1 and per-
formed rendering on the 5 models present in dataset.
Since no view statistics (or training set containing real
images) is available in this dataset, we manually de-
fine the ranges of camera extrinsics depending on the
models (see Section 3.1.4). Since all the models are
presented in the unit cube, the lights and the camera
positions are added with respect to the bounding box
unit. Along with adding a white and random back-
ground (Section 3.1.3), we also added a background
resembling a table similar to that of the test images.

This idea was taken from (Sarkar et al., 2017) which
also performs the tasks of 3D object recognition in 2D
images using CNN.

We render 2000 images with different views per
model - which results to 6000 images per category
instance with different background.

4.1.2 CNN architecture and training details

In order to evaluate our method against (Sarkar et al.,
2017) which uses AlexNet on rendered images, we
use AlexNet as our base network. This is done to iso-
late the effect of our domain adaption from CNN de-
sign. Because of the simplicity of AlexNet, our train-
ing do not require large amount of GPU memory and
we could easily use a batch size of 64 in GTX 1070.
We finetune our network initialized from pretrained
ImageNet for 30 epochs with a cross entropy loss. We
use a learning rate of 0.0001 which we decreased by
half after 20 epochs and Adam optimizer. The fine-
tuneing of 30 epochs for a training set of size 30k im-
ages takes around 30 minutes.

4.2 Comparison algorithms

We compare our results with two very different ap-
proaches:

(1) Local-feature based recognition: We use
the classical local-feature based object recognition
pipeline where feature-augmented 3D models are cre-
ated by (a) performing Structure From Motion (SFM)
on the training images or by (b) model based approach
such as (Sarkar et al., 2016). During test/query time,
features extracted from the given query image are
matched to that of the feature augmented 3D mod-
els and subsequently a recognition is made. For this
query phase we used a sophisticated version of PNP +
RANSAC (solution of Perspective-n-Points problem
under RANSAC iterations) known as MOPED (Collet
Romea et al., 2011). For creating feature augmented



Figure 2: Some examples of the positive recognition from our system

Figure 3: Some of the erroneous recognition. The predicted
labels (left to right, top to bottom) are Whitener, Whitener,
Whitener, MilkBottle, MilkBottle, Matriochka.

models we use both the technique of tmap and snap2
as explained in (Sarkar et al., 2017).

(2) CNN based recognition: We consider a base-
line CNN approach where a pretrained model is fine-
tuned with the rendered images with minimal render-
ing configurations. This minimal rendering scheme
has been used by many of the existing model based
systems (Hinterstoisser et al., 2017; Sarkar et al.,
2017; Kehl et al., 2017). We use the results from
(Sarkar et al., 2017) for this task, where the 3D mod-
els are rendered with the default rendering settings
of Visualization Toolkit (VTK) (VTK, ) - a direc-

tional headlight located at the center of the camera
and Phong shading interpolation. We use their best
configuration of background and texture for compari-
son.

The comparison of recognition recall is shown in
Table 1. As seen our simple yet effective method im-
prove the previous CNN based recognition system by
a large margin of 24% (0.79→ 0.98). In fact, existing
CNN based system (without sophisticated rendering)
could only improve upon the classical local feature
based system by 8% (0.73→ 0.79). This was mostly
due to high quality and texture details of the 3D mod-
els in the dataset which could not create much dif-
ference in performance from feature matching based
method with the CNN based approach with simple
rendering. Our high quality rendering along with the
domain adaptation improve on the local feature based
system by a margin of 34% (0.73 → 0.98). Figure
2 and 3 respectively shows some of the positive and
erroneous recognition examples.

4.3 Real-time classification system

In this section we provide the details of our real time
AR application of object classification which uses
no real images for training. We chose 2 specialized
categories and 6 common categories for office desks
(namely - Keyboard, Monitor, Headphone, Mug, Bot-
tle, Chair) in the aim of having an appropriate demo



Figure 4: Snapshots of our demo application of real-time object classification using 3D models. Even with a very high
background clutter our system provides good classification results.

application in the office/lab environment.
Our classification system is trained just using the

rendered images of general 3D models with the set-
tings mentioned in Section 3.1. No real images are
used at any step. Also, the 3D models used are from
publicly available databases and do not correspond to
the exact objects from the real world.

4.3.1 Training set

We use ShapeNet (Chang et al., 2015b) to get
3D models of the respective categories. ShapeNet
core contains common daily objects with alignments
which we used for the gravity direction while plac-
ing lights and camera. We randomly take a maximum
of 100 3D models for each category, and sample 600
different views for each 3D model - giving a total of
6000 rendered images for a category. Along with the
background augmentation (3 different backgrounds -
Section 3.1.3), we train using a total of 18k images
per class.

The details of finetuning CNN for the classifica-
tion application is similar to that of Section 4.1.2.
We finetune AlexNet using the generated images ex-
plained above.

4.3.2 Testing with real images and AR
application

Our application performs quite impressively even
tough it is not trained using any real images. Fig-
ure 4 shows some screenshots of our application. As
we zoom towards an object, the application shows the
category class. A short video showing the output of
our application is provided in the supplementary ma-
terial.

5 CONCLUSION

In this work we provided a simple, yet power-
ful domain adaptation system by the fusion of high
quality rendering and correlation alignment. Using
the rendered images of our method, we significantly
outperformed the existing system which uses a sim-
ple renderer but same learning technique. We also
showed that this idea can be generalized to learn a
classifier capturing different variations of categories
only by using the 3D models of the publicly available
datasets. In future we would like to extend our classi-
fication system to identify 6DOF pose by attaching a
regressor when trained only using the 3D models.

REFERENCES

3Digify (2015). 3digify, http://3digify.com/.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,

Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. (2015a). ShapeNet:
An Information-Rich 3D Model Repository. Techni-
cal Report arXiv:1512.03012 [cs.GR], Stanford Uni-
versity — Princeton University — Toyota Technolog-
ical Institute at Chicago.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. (2015b). ShapeNet:
An Information-Rich 3D Model Repository. Techni-
cal Report arXiv:1512.03012 [cs.GR], Stanford Uni-
versity — Princeton University — Toyota Technolog-
ical Institute at Chicago.

Chopra, S. and Balakrishnan, S. (2013). Deep learning for
domain adaptation by interpolating between domains.

Collet Romea, A., Martinez Torres, M., and Srinivasa, S.
(2011). The moped framework: Object recognition
and pose estimation for manipulation. International
Journal of Robotics Research, 30(10):1284 – 1306.



Collet Romea, A. and Srinivasa, S. (2010). Efficient multi-
view object recognition and full pose estimation. In
2010 IEEE International Conference on Robotics and
Automation (ICRA 2010).

Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual ob-
ject classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338.

Gopalan, R., Li, R., and Chellappa, R. (2011). Domain
adaptation for object recognition: An unsupervised
approach. In Computer Vision (ICCV), 2011 IEEE In-
ternational Conference on, pages 999–1006. IEEE.

Hao, Q., Cai, R., Li, Z., Zhang, L., Pang, Y., Wu, F., and
Rui, Y. (2013). Efficient 2d-to-3d correspondence fil-
tering for scalable 3d object recognition. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 899–906.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.

Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Kono-
lige, K. (2017). On pre-trained image features
and synthetic images for deep learning. CoRR,
abs/1710.10710.

Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H.
(2009). From structure-from-motion point clouds to
fast location recognition. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 2599–2606.

Johns, E., Leutenegger, S., and Davison, A. J. (2016). Pair-
wise decomposition of image sequences for active
multi-view recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2016 IEEE Conference on,
pages 3813–3822. IEEE.

Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N.
(2017). Ssd-6d: Making rgb-based 3d detection and
6d pose estimation great again. In Proceedings of the
International Conference on Computer Vision (ICCV
2017), Venice, Italy, pages 22–29.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.

Long, M., Cao, Y., Wang, J., and Jordan, M. I. (2015).
Learning transferable features with deep adaptation
networks. In Proceedings of the 32Nd International
Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 97–105.
JMLR.org.

Maturana, D. and Scherer, S. (2015). VoxNet: A 3D Convo-
lutional Neural Network for Real-Time Object Recog-
nition. In IROS.

Peng, X., Sun, B., Ali, K., and Saenko, K. (2014). Explor-
ing invariances in deep convolutional neural networks
using synthetic images. CoRR, abs/1412.7122.

Qi, C. R., Su, H., Nießner, M., Dai, A., Yan, M., and
Guibas, L. J. (2016). Volumetric and multi-view cnns
for object classification on 3d data. In Proceedings of

the IEEE conference on computer vision and pattern
recognition, pages 5648–5656.

Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster
R-CNN: towards real-time object detection with re-
gion proposal networks. CoRR, abs/1506.01497.

Sarkar, K., Pagani, A., and Stricker, D. (2016). Feature-
augmented trained models for 6dof object recognition
and camera calibration. In Proceedings of the 11th
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, pages
632–640.

Sarkar, K., Varanasi, K., and Stricker, D. (2017). Trained
3d models for cnn based object recognition. In Pro-
ceedings of the 12th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 5: VISAPP, (VISI-
GRAPP 2017), pages 130–137.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.

Skrypnyk, I. and Lowe, D. (2004). Scene modelling, recog-
nition and tracking with invariant image features. In
Mixed and Augmented Reality, 2004. ISMAR 2004.
Third IEEE and ACM International Symposium on,
pages 110–119.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. G.
(2015a). Multi-view convolutional neural networks
for 3d shape recognition. In Proc. ICCV.

Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015b). Render
for cnn: Viewpoint estimation in images using cnns
trained with rendered 3d model views. In The IEEE
International Conference on Computer Vision (ICCV).

Sun, B., Feng, J., and Saenko, K. (2015). Return of frustrat-
ingly easy domain adaptation. CoRR, abs/1511.05547.

Sun, B. and Saenko, K. (2016). Deep CORAL: correla-
tion alignment for deep domain adaptation. CoRR,
abs/1607.01719.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015a). Going deeper with convolutions.
In Computer Vision and Pattern Recognition (CVPR).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2015b). Rethinking the inception architecture for
computer vision. CoRR, abs/1512.00567.

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell,
T. (2014). Deep domain confusion: Maximizing for
domain invariance. CoRR, abs/1412.3474.

VTK. Visualization toolkit (vtk), http://www.vtk.org/.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,

and Xiao, J. (2015). 3d shapenets: A deep representa-
tion for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1912–1920.

Xiang, Y., Mottaghi, R., and Savarese, S. (2014). Beyond
pascal: A benchmark for 3d object detection in the
wild. In IEEE Winter Conference on Applications of
Computer Vision (WACV).


